

LA-UR-21-29077

Approved for public release; distribution is unlimited.

Title: Al Enhanced Discretizations for High-Fidelity Physics Simulations

Author(s): Brady, Peter T.

Brady, Peter T. Livescu, Daniel Sharan, Nek

Intended for: Report

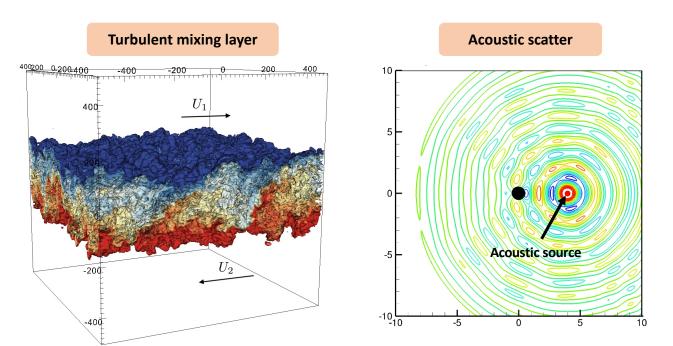
Issued: 2021-09-15

Al Enhanced Discretizations for High-Fidelity Physics **Simulations**

Peter Brady; Daniel Livescu; Nek Sharan CCS-2

Introduction

- Non-dissipative schemes are preferred for high-fidelity turbulent flow and aeroacoustics simulations
- Practical applications need stable boundary closures that ensure stability without adding artificial (numerical) dissipation

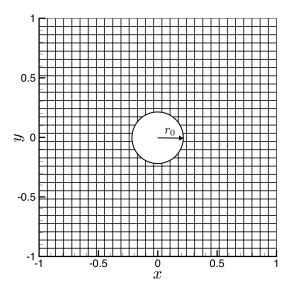


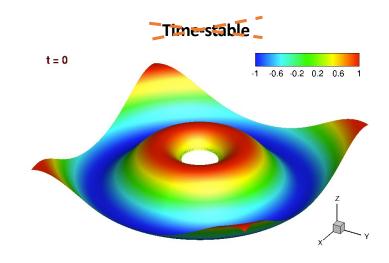
Boundary instabilities with non-dissipative schemes

Time stability. A method is **time-stable** if for homogenous boundary data and no source terms, there is a unique solution $\mathbf{u}(t)$ satisfying

$$\|\mathbf{u}\|_{\Delta x} \le K \|\mathbf{f}\|_{\Delta x}, \quad \text{or} \quad \frac{d}{dt} \|\mathbf{u}\|_{\Delta x}^2 \le 0,$$

where K is independent of Δx , **f** and t. **f** denotes the initial data.





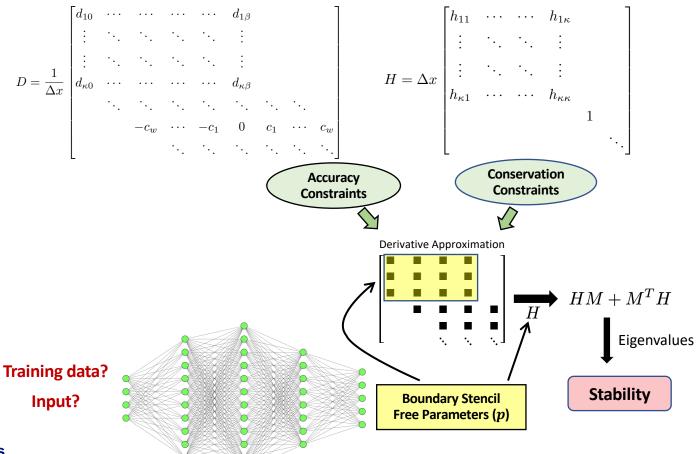
Sufficient conditions for time stability

• For a semidiscrete approximation

$$rac{d\mathbf{v}}{dt} = M\mathbf{v} + \mathbf{b}$$
 $\mathbf{v}(0) = \mathbf{f}(x),$ $M = \text{system matrix} \qquad \mathbf{b} = \text{boundary data}$

- Sufficient conditions for time-stability:
 - All eigenvalues of M have non-positive real part and the geometric multiplicity of every eigenvalue with zero real part is equal to its algebraic multiplicity
 - There exists a real symmetric positive definite matrix H such that $\mathbf{x}^T H M \mathbf{x} \leq 0$ for all $\mathbf{x} \Rightarrow M^T H + H M$ is negative semidefinite

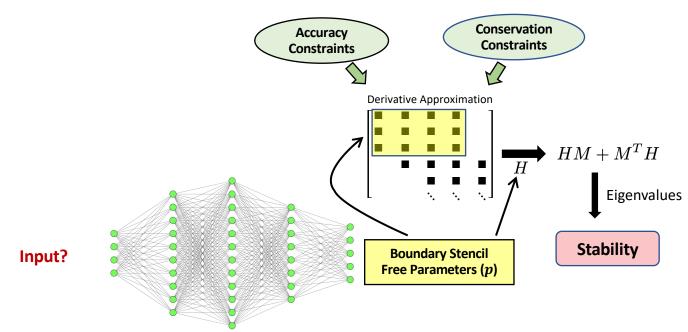
Derivation of time-stable boundary stencils for centered schemes

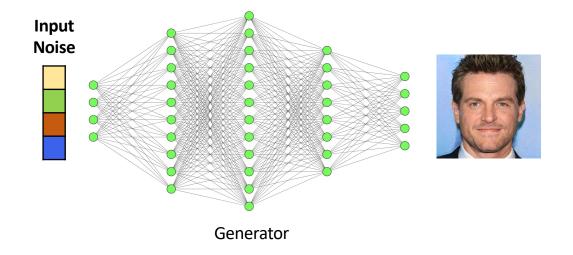


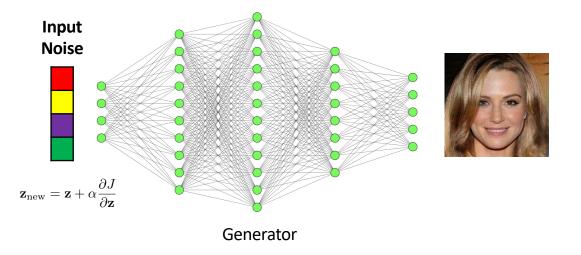
Derivation of time-stable boundary stencils for centered schemes

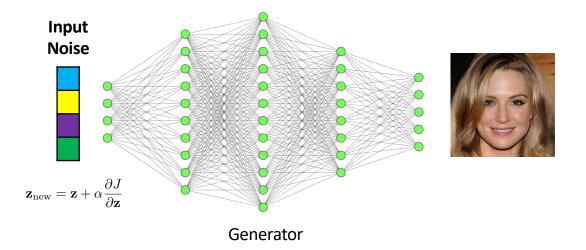
Cost Function

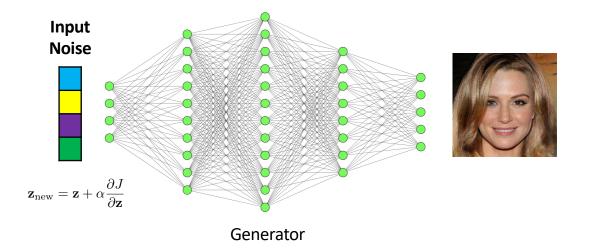
$$J = \operatorname{loss}(\boldsymbol{\Lambda}_{\mathcal{L}}^{+}, \sigma_{\mathcal{L}} \mathbf{I}_{\mathcal{L}}^{+}) + \operatorname{loss}(\boldsymbol{\Lambda}_{H}^{-}, \sigma_{H} \mathbf{I}_{H}^{-}) = \sum_{i=0}^{n-1} \left(\Lambda_{\mathcal{L}, i}^{+} - \sigma_{\mathcal{L}} I_{\mathcal{L}, i}^{+} \right)^{2} + \sum_{i=0}^{n-1} \left(\Lambda_{H, i}^{-} - \sigma_{H} I_{H, i}^{-} \right)^{2}$$









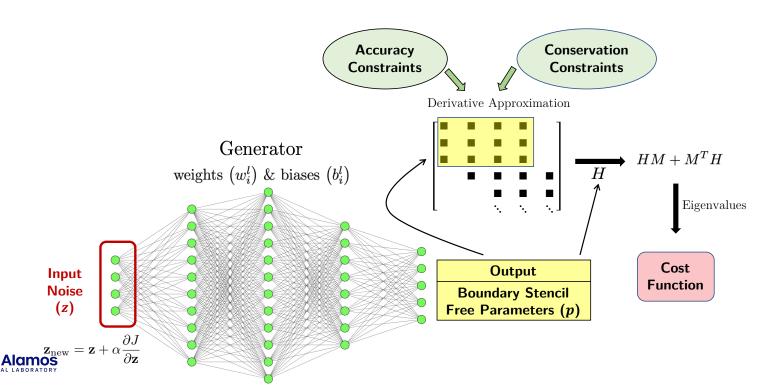


sses Gender

Pose

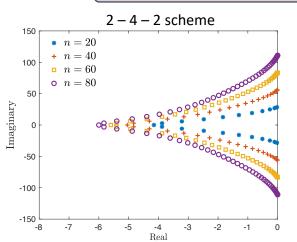
Controllable generation of boundary stencils

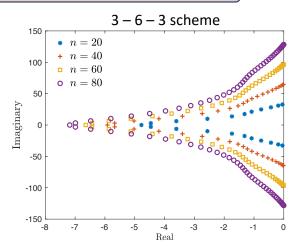
- Step 1: Coarse-grained search Fix the weights and biases
- Step 2: Finer modifications to the noise vector for time stability



Numerical results: Scalar hyperbolic problem

Eigenvalue spectrum from the derived schemes





Convergence rate

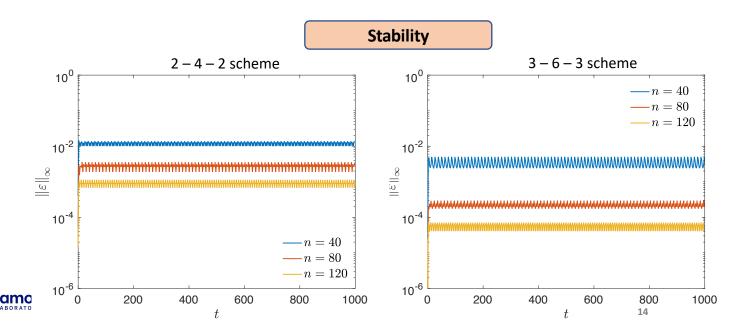
n	2-4-2 scheme				3-6-3 scheme			
	$\log_{10} \ \varepsilon\ _2$	Rate	$\log_{10} \ \varepsilon\ _{\infty}$	Rate	$\log_{10} \ \varepsilon\ _2$	Rate	$\log_{10} \ \varepsilon\ _{\infty}$	Rate
20	-1.973422		-1.703554		-2.279161		-1.948476	
40	-2.916809	3.134	-2.574815	2.894	-3.449783	3.889	-3.196234	4.145
80	-3.835924	3.053	-3.486709	3.029	-4.631867	3.927	-4.366281	3.887
160	-4.745814	3.023	-4.384746	2.983	-5.826623	3.969	-5.557024	3.956
320	-5.651926	3.010	-5.282615	2.983	-7.026841	3.987	-6.756342	3.984
640	-6.556365	3.004	-6.197129	3.038	-8.229245	3.994	-7.958516	3 .994

Numerical results: Inviscid Burgers' equation

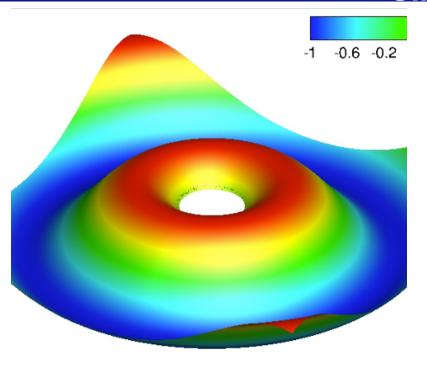
$$\frac{\partial U}{\partial t} + \frac{\partial}{\partial x} \left(\frac{U^2}{2} \right) = f_U. \qquad 0 \le x \le 1, \ t \ge 0,$$

$$U(x,t) = \sin 2\pi (x-t) + C,$$

$$f_U(x,t) = \pi \sin 4\pi (x-t).$$



Al Enhanced Discretizations for High-Fidelity Physics **Simulations**



Time stable simulation of varying coefficient scalar hyperbolic equation

Project Description:

Combine theoretical analysis with deep learning to design efficient numerical discretizations for direct numerical simulations of fluid flow.

Project Outcomes:

Developed a controllable generation approach using deep NN to derive timestable, high-order numerical schemes for high-fidelity physics simulations.

PI: Peter Brady

Total Project Budget: 60k

ISTI Focus Area: Data Science and Al

Infrastructure / Simulation

END

